

Python bindings to RELION

[image: PyPI release]
 [https://pypi.python.org/pypi/relion][image: Supported Python versions]
 [https://pypi.python.org/pypi/relion][image: Total alerts]
 [https://lgtm.com/projects/g/DiamondLightSource/python-relion/alerts/][image: Documentation Status]
 [https://python-relion.readthedocs.io/en/latest/?badge=latest][image: Test coverage]
 [https://codecov.io/gh/DiamondLightSource/python-relion][image: Code style: black]
 [https://github.com/ambv/black]
	Free software: GPLv2 and BSD, see the license file for details [https://github.com/DiamondLightSource/python-relion/blob/main/LICENSE]

	Documentation: https://python-relion.readthedocs.io.

This package provides a python interface to the information contained in a Relion project folder. It does not run Relion itself.

Currently it caters for specific fields from the Motion Correction, CTF Find, 2D Classification and 3D Classification stages of the Relion pipeline, but this could readily be expanded to more stages and fields.

Contents:

	Usage

	API
	Project object

	Stage-specific information

	Credits

Usage

To access a Relion project folder you first need to create a relion.Project object (c.f. API for more information):

import relion
proj = relion.Project("/path/to/relion/project/directory")
proj = relion.Project(pathlib.Path("/project/directory")) # path objects are supported

The directory structure inside a Relion directory is built up of stages and jobs.
Each stage folder will contain one or more job folders.
The job folder(s) contain files related to the stage, including the *.star files from which values can be read:

project_root
│
├── MotionCorr
│ └── job002
│ └── corrected_micrographs.star
│ └── ...
├── CTFFind
│ └── job003
│ └── micrographs_ctf.star
│ └── ...
├── Class2D
│ ├── job008
│ │ └── run_it025_data.star
│ │ └── run_it025_model.star
│ │ └── ...
│ └── job013
│ └── run_it_025_data.star
│ └── run_it_025_model.star
│ └── ...
└── Class3D
 └── job016
 └── run_it_025_data.star
 └── run_it_025_model.star
 └── ...

The desired EM values are extracted from *.star files.
For example, a snippet from MotionCorr/job002/corrected_micrographs.star is shown below:

...
loop_
_rlnCtfPowerSpectrum #1
_rlnMicrographName #2
_rlnMicrographMetadata #3
_rlnOpticsGroup #4
_rlnAccumMotionTotal #5
_rlnAccumMotionEarly #6
_rlnAccumMotionLate #7
MotionCorr/job002/Movies/20170629_00021_frameImage_PS.mrc MotionCorr/job002/Movies/20170629_00021_frameImage.mrc MotionCorr/job002/Movies/20170629_00021_frameImage.star 1 16.420495 2.506308 13.914187
MotionCorr/job002/Movies/20170629_00022_frameImage_PS.mrc MotionCorr/job002/Movies/20170629_00022_frameImage.mrc MotionCorr/job002/Movies/20170629_00022_frameImage.star 1 19.551677 2.478968 17.072709
MotionCorr/job002/Movies/20170629_00023_frameImage_PS.mrc MotionCorr/job002/Movies/20170629_00023_frameImage.mrc MotionCorr/job002/Movies/20170629_00023_frameImage.star 1 17.547827 1.941103 15.606724
MotionCorr/job002/Movies/20170629_00024_frameImage_PS.mrc MotionCorr/job002/Movies/20170629_00024_frameImage.mrc MotionCorr/job002/Movies/20170629_00024_frameImage.star 1 18.100817 1.722567 16.378250
...

To access the _rlnAccumMotionTotal column in this file you can use:

>>> [micrograph.total_motion for micrograph in proj.motioncorrection["job002"]]
['16.420495', '19.551677', '17.547827', '18.100817', ...]

Stages are dictionary-like objects, so can discover the list of all known jobs by:

>>> list(proj.class2D)
['job008', 'job013']

and use the other standard dictionary accessors (.values(), .keys(), .items()), too.
You can also convert the stages into normal dictionaries:

>>> dict(p.ctffind)
{'job003': [CTFMicrograph(...), ...]}

For a list of supported stages and a list of supported values per stage please have a look at the API page.

API

Project object

	
class relion.Project(path)

	Reads information from a Relion project directory and makes it available in
a structured, object-oriented, and pythonic fashion.

	
property class2D

	access the 2D classification stage of the project.
Returns a dictionary-like object with job names as keys,
and lists of Class2DParticleClass namedtuples as values.

	
property class3D

	access the 3D classification stage of the project.
Returns a dictionary-like object with job names as keys,
and lists of Class3DParticleClass namedtuples as values.

	
property ctffind

	access the CTFFind stage of the project.
Returns a dictionary-like object with job names as keys,
and lists of CTFMicrograph namedtuples as values.

	
property motioncorrection

	access the motion correction stage of the project.
Returns a dictionary-like object with job names as keys,
and lists of MCMicrograph namedtuples as values.

The individual stage accessors .ctffind, .class2D, etc. return a dictionary-like object that allows you to access individual Relion jobs within that particular stage.
The dictionary key names are the relion job names (usually jobXXX), the dictionary value is a list of stage-specific named tuples, listed below.

Stage-specific information

	
class relion._parser.ctffind.CTFMicrograph(micrograph_name, astigmatism, defocus_u, defocus_v, defocus_angle, max_resolution, fig_of_merit, amp_contrast, diagnostic_plot_path)

	Contrast Transfer Function stage.

	
property amp_contrast

	Amplitude contrast.

	
property astigmatism

	Estimated astigmatism. Units angstrom (A).

	
property defocus_angle

	Estimated angle of astigmatism.

	
property defocus_u

	Averaged with Defocus V to give estimated defocus. Units angstrom (A).

	
property defocus_v

	Averaged with Defocus U to give estimated defocus. Units angstrom (A).

	
property diagnostic_plot_path

	Path to the CTF diagnostic (fit/data comparison) plot (jpeg).

	
property fig_of_merit

	Figure of merit/CC/correlation value. Confidence of the defocus estimation.

	
property max_resolution

	Maximum resolution that the software can detect. Units angstrom (A).

	
property micrograph_name

	Micrograph name. Useful for reference.

	
class relion._parser.motioncorrection.MCMicrograph(micrograph_name, micrograph_snapshot_full_path, micrograph_number, total_motion, early_motion, late_motion, drift_data)

	Motion Correction stage.

	
property drift_data

	Alias for field number 6

	
property early_motion

	Early motion.

	
property late_motion

	Late motion.

	
property micrograph_name

	Micrograph name. Useful for reference.

	
property micrograph_number

	Micrograph number: sequential in time.

	
property micrograph_snapshot_full_path

	Path to jpeg of the motion corrected micrograph.

	
property total_motion

	Total motion. The amount the sample moved during exposure. Units angstrom (A).

	
class relion._parser.class2D.Class2DParticleClass(particle_sum, reference_image, class_distribution, accuracy_rotations, accuracy_translations_angst, estimated_resolution, overall_fourier_completeness)

	2D Classification stage.

	
property accuracy_rotations

	Accuracy rotations.

	
property accuracy_translations_angst

	Accuracy translations angst.

	
property class_distribution

	Class Distribution. Proportional to the number of particles per class.

	
property estimated_resolution

	Estimated resolution.

	
property overall_fourier_completeness

	Overall Fourier completeness.

	
property particle_sum

	Sum of all particles in the class. Gives a tuple with the class number first, then the particle sum.

	
property reference_image

	Reference image.

	
class relion._parser.class3D.Class3DParticleClass(particle_sum, reference_image, class_distribution, accuracy_rotations, accuracy_translations_angst, estimated_resolution, overall_fourier_completeness, initial_model_num_particles)

	3D Classification stage.

	
property accuracy_rotations

	Accuracy rotations.

	
property accuracy_translations_angst

	Accuracy translations angst.

	
property class_distribution

	Class Distribution. Proportional to the number of particles per class.

	
property estimated_resolution

	Estimated resolution.

	
property initial_model_num_particles

	The number of particles used to generate the initial model.

	
property overall_fourier_completeness

	Overall Fourier completeness.

	
property particle_sum

	Sum of all particles in the class. Gives a tuple with the class number first, then the particle sum.

	
property reference_image

	Reference image.

Credits

	Anna Horstmann

	Colin M. Palmer

	Daniel Hatton

	Donovan Webb

	Markus Gerstel

	Sjors H.W. Scheres

	Takanori Nakane

Index

 A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | O
 | P
 | R
 | T

A

 	
 	accuracy_rotations() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

 	accuracy_translations_angst() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

 	
 	amp_contrast() (relion._parser.ctffind.CTFMicrograph property)

 	astigmatism() (relion._parser.ctffind.CTFMicrograph property)

C

 	
 	class2D() (relion.Project property)

 	Class2DParticleClass (class in relion._parser.class2D)

 	class3D() (relion.Project property)

 	Class3DParticleClass (class in relion._parser.class3D)

 	
 	class_distribution() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

 	ctffind() (relion.Project property)

 	CTFMicrograph (class in relion._parser.ctffind)

D

 	
 	defocus_angle() (relion._parser.ctffind.CTFMicrograph property)

 	defocus_u() (relion._parser.ctffind.CTFMicrograph property)

 	
 	defocus_v() (relion._parser.ctffind.CTFMicrograph property)

 	diagnostic_plot_path() (relion._parser.ctffind.CTFMicrograph property)

 	drift_data() (relion._parser.motioncorrection.MCMicrograph property)

E

 	
 	early_motion() (relion._parser.motioncorrection.MCMicrograph property)

 	
 	estimated_resolution() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

F

 	
 	fig_of_merit() (relion._parser.ctffind.CTFMicrograph property)

I

 	
 	initial_model_num_particles() (relion._parser.class3D.Class3DParticleClass property)

L

 	
 	late_motion() (relion._parser.motioncorrection.MCMicrograph property)

M

 	
 	max_resolution() (relion._parser.ctffind.CTFMicrograph property)

 	MCMicrograph (class in relion._parser.motioncorrection)

 	micrograph_name() (relion._parser.ctffind.CTFMicrograph property)

 	(relion._parser.motioncorrection.MCMicrograph property)

 	
 	micrograph_number() (relion._parser.motioncorrection.MCMicrograph property)

 	micrograph_snapshot_full_path() (relion._parser.motioncorrection.MCMicrograph property)

 	motioncorrection() (relion.Project property)

O

 	
 	overall_fourier_completeness() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

P

 	
 	particle_sum() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

 	
 	Project (class in relion)

R

 	
 	reference_image() (relion._parser.class2D.Class2DParticleClass property)

 	(relion._parser.class3D.Class3DParticleClass property)

T

 	
 	total_motion() (relion._parser.motioncorrection.MCMicrograph property)

Database model

When on-the-fly Relion processing is performed at eBIC, results are written to the ISPyB database
as they become available. The tables in ISPyB designed to hold SPA information have various
relationships between them, which requires that certain records be inserted before others. In an
environment where database operations have been separated from the data collection and the
Relion project itself in order to improve the stability and recoverability of the pipeline the order
in which these insertions are made is not guaranteed. This means the service performing the database
operations will not be able to determine the necessary relationships between entries. In order to
coordinate with the database we employ a model of the database table structure within the code that
follows the Relion project and therefore, in principle, has all the required information about what
the entry relationships should be.

An sqlalchemy ISPyB ORM is available as part of the ispyb API package [https://github.com/DiamondLightSource/ispyb-api]
and we make use of this to keep up to date with the available ISPyB columns.

Tables

The relion.dbmodel.modeltables.Table class allows rows to be added to a table with defined
columns while maintaining the uniqueness of entries under set conditions in order to avoid duplication.
On initialisation of a Table instance a single primary key must be specified . When a row is added
(with the add_row method) if the value of the primary key is not specified for the new row (i.e.
it is left as None) then the primary key is auto-incremented. On initialisation there is also the
option to specify “unique” columns. The table will not insert a new row if a row already exists with the
same entries for the “unique” columns (even if the value of the primary key is not provided); instead it
will perform an update of the existing row.

An example of a Table definition for the ParticleClassification table is:

class ParticleClassificationTable(Table):
 def __init__(self):
 columns, prim_key = parse_sqlalchemy_table(sqlalchemy.ParticleClassification)
 columns.append("job_string")
 super().__init__(columns, prim_key, unique=["job_string", "class_number"])

(The ISPyB column names are changed from camel to snake case here.) The "job_string" column which is
added here, extraneously to the columns that exist in ISPyB, is useful for keeping track of which results
belong to which Relion job. The unique key word argument is used to specify that only one row can exist
for a given combination of job_string and class_number, i.e. for each classification job there can
only be one record for each class number.

In addition, a column can be set to auto-increment with the counters key word in Table initialisation.
This is used, for example, in the MotionCorrection table which contains an image_number column which
needs to be a unique integer for each micrograph. An appendable column may be specified with the append
keyword. For these columns values are appended to a list rather than updated.

 nav.xhtml

 Table of Contents

 		
 Python bindings to RELION

 		
 Usage

 		
 API

 		
 Project object

 		
 Stage-specific information

 		
 Credits

_static/plus.png

_static/file.png

_static/minus.png

